Problem Set I: Due Wednesday, January 21, 2015

- 1.) Derive by heuristic methods the thermal diffusivity and shear viscosity for a dilute gas of particles undergoing hard sphere interactions.
- 2.) Consider a heavy particle of mass M, radius d_2 in a gas of light particles of mass m, radius d_1 ($m \ll M$, $d_2 > d_1$) at temperature T.
 - a.) Estimate the mobility of the heavy particle.
 - b.) When will the heavy particle be fully deflected from its trajectory? What is the deflection length?
 - c.) When will the energy of the heavy particle equal that of the light background particle?
- 3.) Use the result from Problem 2 to estimate the time scale for thermal equilibration of ions of mass M_i and temperature T_i with electrons of mass m_e and T_e . Take $T_e > T_i$. Compare this time scale with the electron-electron and ion-ion collision times.
- 4.) Derive the dielectric function $\in (k, \omega)$ for Langmuir waves, incorporating electron pressure effects. Hint: Work with displacement to calculate polarization. What is the dispersion relation?
- 5.) a.) Calculate the dispersion relation for a surface wave on a fluid of finite depth *d*. Discuss the limits $kd \ll 1$, $kd \gg 1$.
 - b.) Based on your answer for kd << 1, guess the shallow water equations, for fluid motion in a thin layer? Then read the discussion of shallow water waves in Landau and Lifshitz "Fluid Mechanics" and explain the applicability, structure, limitations, etc. of these equations.
 - c.) What is the analogue of a shock front in the shallow water system?